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Abstract. We examine the dynamics of the Kuramoto model with a new analytical approach.
By defining an appropriate set of moments the dynamical equations can be exactly closed. We
discuss some applications of the formalism such as the existence of an effective Hamiltonian
for the dynamics. We also show how this approach can be used to numerically investigate the
dynamical behaviour of the model without finite-size effects.

The study of the dynamical behaviour of systems with a very large number of mutual
interacting units is a well debated subject. It is a topic with interest in many different
interdisciplinar fields. The cooperation between the members of a population may
lead to very rich dynamical situations ranging from chaos, periodicity, phase locking,
synchronization to self-organized critical states, just to cite a few [1, 2]. In the presence
of disorder such interaction can be frustrated and this yields new types of behaviour. In
the realm of disordered systems much work has been devoted to the study of models
with relaxational dynamics, for instance spin-glass models [3]. In those cases there exists
a Hamiltonian function which governs the dynamics of the system. A large body of
information can be obtained by using the tools of statistical mechanics. One of the main
results at equilibrium is that the fluctuation–dissipation theorem is obeyed. But it is definitely
interesting to study the dynamical behaviour of dissipative systems in the presence of
external driving forces.

A simple model of this type was proposed by Kuramoto to analyse synchronization
phenomena in populations of weakly nonlinearly coupled oscillators [4]. It has recently
become a subject of extensive studies due to its applications to biology, chemistry and
physics [5]. The purpose of this paper is to present a new analytical approach to the
Kuramoto model based on the definition of a suitable hierarchy of moments. It allows us to
reproduce previous known results and, in addition, gives a new insight into the nature of the
problem. Here, we will present the method and consider its potential applications leaving
detailed analysis for future work. Through this formalism it is possible to analyse some
aspects of the model that deserve special attention. As an example, it has been suggested
that, under certain conditions, it is possible to define a suitable Hamiltonian function
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from which it is possible to compute stationary properties of the system within the usual
thermodynamic formalism such as ground states and universality classes at zero temperature
[6] and equilibrium Boltzmann distribution in the more general case at finite temperature
[7]. Our method can answer this question in a simple way. We will also show how our
approach can be used to numerically investigate the behaviour of the Kuramoto model free
of finite-size effects. Particular results will be obtained for the bimodal distribution case.

Our formalism complements other recent theories developed to analyse the Kuramoto
model. In particular, it is worthwhile mentioning the order function approach [8] useful for
studying properties of the stationary states of the system as well as the critical exponent of
the order parameter at the onset of entrainment. Another interesting method was proposed in
[9] based on kinetic theory and suitable to deal with questions related to the time dependence
of the probability density of the system.

The Kuramoto model is defined by a set ofN oscillators whose state can be specified
in terms of only one degree of freedom, the phase. Each phase{φi; 1 6 i 6 N} follows
the dynamical equation

∂φi

∂t
= ωi − K0

N

N∑
j=1

sin(φi − φj )+ ηi (1)

whereωi is the intrinsic frequency of the oscillator randomly chosen from a distribution
of density g(ω), K0 is the strength of the coupling which, as in the original case, we
will consider ferromagnetic although more complex situations have been analysed in the
literature [10]. Finally,ηi(t) denotes a Gaussian-independent white-noise process

〈ηi(t)ηj (t ′)〉 = 2T δij δ(t − t ′). (2)

Without any other element there is a competition between the coupling, which tends to
synchronize all the oscillators, and the noise (frequencies plus thermal noise) which breaks
the coherence. For a criticalKc there is a spontaneous transition from incoherence to a new
state where a macroscopic number of units are synchronized.

To solve the dynamics of the Kuramoto model we define the the following set of
moments,

Hm
k =

1

N

N∑
j=1

〈exp(ikφj )〉ωmj (3)

where i is the imaginary unit andk,m are integers in the range(−∞,∞), [0,∞)
respectively. The averages〈(·)〉 and (·) indicate averages over the noise and frequency
distributions respectively. The definition of this set of moments is the basis of the new
dynamical approach we are proposing. Note thatHm

k is the more natural object we can
construct which is invariant under the local transformationφi → φi + 2π . This is also the
local symmetry of the dynamical equations (1). It is possible to show that the momentsHm

k

are self-averaging with respect to the thermal noise†. The equation of motion forHm
k can

easily be derived using equation (3),

∂Hm
k

∂t
= −K0k

2
(Hm

k+1h−1−Hm
k−1h1)− k2THm

k + ikHm+1
k (4)

where we have defined thathk = H 0
k . The term k2THm

k can be simply obtained
using the Gaussian representation for the noiseηi , performing integration by parts and

† The derivation of this result comes from the fact that a probability density of oscillators can be defined for the
Kuramoto model, see Strogatz and Mirollo [5].
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using the regularization condition∂φ(t)
∂η(t)

= 1
2. In this form the equations are closed

because the time operator∂
∂t

acting on the momentHm
k always generates new moments

of the same type. If we define the time-dependent generating functiongt (x, y) =∑∞
k=−∞

∑∞
m=0 exp(−ikx) y

m

m!H
m
k (t) it is easy to check from equation (4) that it satisfies

the following differential equation,

∂gt

∂t
= − ∂

∂x
(A(x, t)gt )+ T ∂

2gt

∂x2
− ∂2gt

∂x∂y
(5)

where

A(x, t) = −K0

2i
(exp(−ix)h1− exp(ix)h−1)

= K0

N

N∑
j=1

sin(x − φj ) = K0r sin(θ − x) (6)

and we have expressedh1 = h∗−1 = r exp(iθ) where r is the parameter which measures
the coherence (synchronization) between oscillators. By substituting equation (3) into
the definition of the generating function it is straightforward to check thatgt (x, y) =
1
N

∑N
j=1 δ(φj − x) exp(yωj ). For y = 0 this is nothing else but the probability density

of one oscillator having phasex. In this way we recover the results obtained by Bonilla
[11] using the path integral formalism. The hierarchy of equations (4) only depends on
the time evolution of the momenth1(h−1 = h∗1) which is the order parameter of the
problem. The full set of moments are self-consistently computed using the conditions
h1(t) = 1

2π

∫ 2π
0 exp(ix)gt (x, 0) dx andHm

0 = ωm. In this way, we have reached a dynamical
solution of the problem identical to that found in some mean-field glassy models where
dynamical equations can be exactly closed [12].

Once we have presented the formulation we present its applications. The method
furnishes a clear way to show why a static description based on conventional equilibrium
statistical mechanics cannot give reliable information about the long-time properties of
the Kuramoto model (such as the existence of stationary states). Let us stress from the
beginning that our approach deals with the dynamics of the model once the thermodynamic
limit N →∞ is taken first then the limitt →∞. Our results are meaningful in this case.
In the other dynamical approach one takes the thermodynamic limitN →∞ after solving
the dynamics in the long-time limitt → ∞. This yields quite different results. These
considerations are of special interest to the results reported in [6] where the last situation
has been analysed. Which of the two approaches is valid relies on the timescales one is able
to observe. Because the crossover time which matches the two approaches grows extremely
fast with the system size, our approach (which, on the other hand, is the most conventional
one) is more suited to investigate what can be observed in macroscopic systems in realistic
timescales.

Let us consider the following Hamiltonian function,

Heff = −K0

N

∑
i<j

cos(φi − φj )−
∑
i

ωiφi (7)

where the phasesφi are restricted to the interval [−π, π) in orderHeff to be bounded from
below. This Hamiltonian function is the only candidate which generates equations (1) in
the Langevin dynamicṡφi = − ∂Heff

∂φi
+ ηi . We will show that the equilibrium solutions of

(7) are not stationary solutions of the dynamics equation (1) even at zero temperature. To
prove this result we compute the partition function of equation (7) at temperatureT = 1

β

and evaluate the momentsHm
k (eq) in equilibrium. The computations are quite simple since
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the disorder inHeff is only site dependent. For sake of simplicity we will consider here the
case in which the disorder distribution is symmetric(g(ω) = g(−ω)). It is easy to obtain
the equilibrium values of the different moments. We obtainHm

k (eq) = Fmk (eq) exp(ikθ)
whereθ is an arbitrary phase† and theFmk (eq) are given by

Fmk (eq) = ωmRωk (βK0r) (8)

where theA(ω) = ∫
dω g(ω)A(ω) is the average over the frequency distribution and

Rωk (x) = Jωk (x)

J ω0 (x)
. TheJωk (x) are generalized Bessel-like functions defined by,

Jωk (x) =
∫ 2π

0
dφ exp(ikφ + x cos(φ)+ βωφ) (9)

wherer is fixed by the conditionr = F 0
1 (eq) = Rω1 (βK0r) .

To check if theFmk (eq) are stationary solutions of the dynamics we plug them into
equation (4) and use the recursion relation,

Jωk+1(x) = Jωk−1(x)−
2(k − iβω)

x
Jωk (x)−

2i exp(x)

x
(exp(2πβω)− 1) (10)

obtaining after some manipulations,

∂Fmk (eq)

∂t
= ikvm (11)

where

vm = T exp(βK0r)
ωm(exp(2πβω)− 1)

J ω0 (βK0r)
. (12)

Due to the symmetry property of theg(ω) it is easy to check thatvm always vanishes
for m even. But it never does for oddm. In the high-temperature regimeβ → 0 it is
possible to show thatv2m−1 = ω2m + O(β3). In the limit T → 0 it is easy to check that
v2m−1 = ω2m + O( 1

β
). The general result is that oddm-moments violate stationarity‡. We

conclude that the time derivative of the equilibrium momentsHm
k (eq) with oddm get an

imaginary contribution proportional toi = exp(i π2 ) which is transverse in the complex plane
to theHm

k (eq) itself. Note that the termvm is the angular velocity or time derivative of the
global phase for all the moments which only depends on the numberm. In the case of the
bimodal distributiong(ω) = 1

2(δ(ω−ω0)+ δ(ω+ω0)) all moments reduce to two different
moments (see below) depending ifm is even or odd. In figure 1 we showvodd as a function
of the temperature in the bimodal distribution for different values ofK0§. This proves that
equilibrium states ofHeff at finite temperature and also the ground states ofHeff are not
stationary states of the dynamics. Note that we cannot discard the fact that local minima
(but not global) ofHeff at zero temperature are fixed points of the dynamics.

Now we want to show how equations (4) can be used as a powerful tool to investigate
the dynamical behaviour of the Kuramoto model. We will consider the case of the bimodal
distribution because the phase diagram of the model is very rich. We have checked
the situation for other distributions of frequencies and the results have always been very

† Heff only changes by a constant8
∑
i ωi if all the phasesφi are changed toφi +8.

‡ An exception to this rule are the momentsHm
0 , among them the average frequency, becausek = 0 and therefore

the right-hand side of equation (11) vanishes.
§ In the rest of this paper and without loss of generality we will takeω0 = 1
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Figure 1. vodd as a function ofT for the bimodal distribution for three values ofK0 = 0.5, 1, 2
from bottom to top. The cusp invodd moves to higher temperatures asK0 increases.

satisfactory. In this case the full set of momentsHm
k reduces to two different sets,fk = Hm

k

for m even andgk = Hm
k for m odd. The full set of dynamical equations read in this case,

∂fk

∂t
= −K0k

2
(fk+1f−1− fk−1f1)− k2Tfk + ikgk (13)

∂gk

∂t
= −K0k

2
(gk+1f−1− gk−1f1)− k2T gk + ikfk. (14)

By defining

ρ+(x) = 1
2

∞∑
k=−∞

, exp(−ikx)(fk + gk)

and

ρ−(x) = 1
2

∞∑
k=−∞

exp(−ikx)(fk − gk)

we observe that these are the probability densities of having one oscillator with phasex

and natural frequencies+1 and−1 respectively. By adding and substracting equations (13)
and (14) we obtain dynamical equations for two sets of dynamical hierarchies, each set
characterized by a population of oscillators with a given natural frequency (+1 or−1). Note
that the two sets of oscillators are also coupled to each other through the terms ikgk and ikfk
in (13) and (14). These equations can also be used to analytically compute stationary states
and perform stability analysis as has been done in [13]. In this last case it can be shown that
the fundamental modelk = 1 decouples form the rest of the modes in a natural way. Here
we follow a different strategy and use the method to numerically solve the set of equations
for a given number 2L+1 of terms in the hierarchy{fk, gk;−L 6 k 6 L}. We stress thatL
is not the number of oscillators in the system which is already infinite from the beginning.
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Figure 2. Trajectory of the system in the(Re(f1), Im(g1)) plane atT = 0.5, K0 = 1 in the
incoherent regime.

To reduce possible dependences on the value ofL we consider periodic boundary conditions
fL+1 = f ∗−L, f−L−1 = f ∗L and do the same for theg’s. In our numerical solution we have
takenL = 100 and have checked that the results are the same by including more terms in
the hierarchy. Equations have been solved using a second-order Euler algorithm. We have
also started from an initial condition of the type shown in equation (8) withθ = 0 in order
to check they are not stationary solutions. Depending on the values of the parametersK0

andT there are different regimes [13].
In figures 2–4 we show the trajectory of the system in the plane(Re(f1), Im(g1)) for

three different regimes (the incoherent, critical and coherent regimes). Note that according
to equation (12) all the trajectories depart from Im(g1) in the direction−i = exp( 3π

2 ). The
first regime (figure 2) corresponds to the region where the incoherent solution is stable. In
this case the order parameterr (r = (f1f

∗
1 )

1
2 ) oscillates with an amplitude which decays to

zero exponentially in time. The second regime is shown in figure 3 and corresponds to the
critical boundary lineT = K0

4 where the incoherent solution becomes unstable. In this case

r oscillates and its amplitude decays to zero algebraically liket−
1
2 as expected for mean-

field models at the critical point. In the regionT < K0
4 the incoherent solution is unstable

and the system reaches a oscillating stationary solution (see figure 4) in agreement with the
results analytically found by Bonillaet al [13, 14]. Note that these types of solutions cannot
be computed from any theory based on an effective Hamiltonian (EH) like that given by
equation (7). Therefore, the assumption of the existence of an effective Hamiltonian not
only implies considering solutions which are not stationary but also to miss another set of
them that are explicitly time dependent. We have also observed the existence of stationary
fixed points for enough large values ofK0 as expected when the ferromagnetic coupling is
strong enough. In this case the equilibrium solution within the EH approach albeit incorrect
is closer to the true stationary one (in the limitK0 → ∞ the EH approach is recovered).
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Figure 3. The same as in figure 2 atT = 0.25,K0 = 1 in the critical boundary. The area of
the central hole decreases like 1/t .
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Figure 4. The same as in figure 2 atT = 0.05,K0 = 1 in the synchronized regime.

Finally, a comparison between the present theory (equations (13) and (14)) for the bimodal
case) and the Brownian simulations is shown in figure 5. Simulations have been performed
by solving equation (1) with a Euler method with a time stepδt = 0.005 and for a population
of N = 50 000 oscillators. Despite some small differences there is remarkable agreement
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Figure 5. Analytical solution (curves) versus Brownian simulations (points) in the oscillationg
regime with parametersT = 2.5,K0 = 1

4 . Brownian simulations were performed with 50 000
oscillators and one realization of the noise.

between the simulation and analytical results.
In summary, we have presented an approach to the analytical solution of the

Kuramoto model which is simple in its formulation and suitable for analytic and numerical
computations. We have shown that the EH approach fails to predict the stationary states of
the system as well as the ground states of the energy function equation (7). We can give
an explanation of this result. It has been suggested [6] that if a minimum of the energy
function equation (7) can be localized in the interior of the region [−π, π) then this should
be asymptotically stable. In the Kuramoto model it seems that this condition is indeed not
satisfied, at least for the ground states of equation (7). As shown in equation (12) the ground
states of equation (7) are not stationary states of the dynamics. The quantitative violation of
the stationarity property has also been analytically computed in equation (12). The reason
for the discrepancy of our results with those reported in [6] relies on how the order of the
limits N →∞ andt →∞ are taken. The limitt →∞ particularly concerns the properties
of the stationary states. When the limitN →∞ is taken first then all ground states ofHeff

become dynamically unstable. The reason is that in this limit a finite density of oscillators
in the ground state touch the boundaries where the effective Hamiltonian equation (7) is
discontinuous. Obviously this is not true if the limitt →∞ is taken first. Then, for finite
N , the phasesθi of the oscillators do not touch the borders (because it has zero measure)
and the ground states are stationary. As said before, the order of limits (firstN →∞ and
later t → ∞) is the one expected to describe the relevant asymptotic dynamics. We have
used equations (4) to investigate the dynamical behaviour of the Kuramoto model free of
finite-size effects. Particular results have been obtained for the bimodal distribution but the
method can be generally applied to any other distribution. It would be very interesting to
use this approach to study the spectrum of correlation and response functions of the model
as well as to investigate the presence of other dynamical regimes.
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